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Abstract
We investigate the dynamics of morphological transitions between mesoscopic
structures on the basis of the model equation for microphase separation of block
copolymers. The phase diagram for the modulated structures is obtained by
means of the single-wavenumber approximation. In order to study the time
evolution of domains, we derive a coupled set of equations for the amplitudes
of the modulated structures in the weak-segregation regime. Simulations of
the transitions between lamellar and hexagonal structures are carried out in two
dimensions and the results are compared with the theory. Simulations in three
dimensions are also presented.

1. Introduction

Domain morphology and kinetics of phase separation have been studied for many years both
experimentally and theoretically. In microphase separation of block copolymers, the domain
growth ceases at a mesoscopic scale causing there to be various mesophases depending on the
block ratio and temperature. It is also well known that mesoscopic domain structures similar
to those of block copolymers are formed in water–surfactant mixtures.

There have been many experiments and theories designed to clarify the formation of
mesophases. Quite recently much attention has been paid to the kinetics of the transitions
between different morphological structures. This order–order transition caused by temperature
quench has been studied—for instance, between spherical and cylindrical mesoscopic domain
structures [1–3] and between BCC and hexagonal close-packed (HCP) structures [4]. Similar
experiments have also been carried out on water–surfactant mixtures [5, 6].

The equilibrium theory for mesophases has been developed to derive the phase diagram
[7, 8]. A pathway from one ordered structure to another structure has been investigated by
evaluating the free-energy landscape [9–11]. Computer simulations of the morphological
transitions in three dimensions have been performed by Qi and Wang [12,13]. However, they
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are mainly concerned with the structural transitions which occur almost simultaneously and
uniformly in the whole system.

The aim of the present paper is to study, both theoretically and by computer simulations,
the kinetics of the morphological transitions. The phase diagram and the stability limit for the
mesophases are obtained using the single-wavenumber approximation. This is an extension
of the theory given in reference [14]. Our main concern is the role of grain boundaries
and dislocations for nucleation of new structures after temperature quench and the growth
behaviour of new domains in the matrix of the unstable structure. We study the kinetics of
growing structures by means of the amplitude equation. Although the amplitude equation
has been used in studying the dynamics of periodic patterns far from equilibrium [15], this
method has not been applied, to our knowledge, to the kinetics of morphological transitions
of mesophases. In reference [16], the kinetics of hexagonal and lamellar structures invading
the uniform state has been considered. However, this is not a transition between two ordered
structures.

In two dimensions, we shall show the simulation results of morphological transitions
between lamellar and hexagonal structures mediated by defects and make a comparison with
our theory. In three-dimensional simulations, we study the transitions from BCC structure to
hexagonal or to lamellar structures which have not been reported so far. It is also shown that a
new bicontinuous structure having a rhombohedral symmetry can exist between lamellar and
hexagonal phases. We discuss the relation with the experimentally observed structure [6].

The organization of the paper is as follows. In section 2, we introduce the free-energy
functional for diblock copolymers and the kinetic equation. In section 3, we derive the phase
diagram for various modulated structures by means of the single-wavenumber approximation.
This approximation is justified for lamellar, hexagonal and BCC structures in the weak-
segregation limit. It is known both experimentally [17] and theoretically [7] that a bicontinuous
structure called a gyroid exists between lamellar and hexagonal phases. However, we do
not consider this phase in the present theoretical analysis since this is beyond the single-
wavenumber approximation. The kinetics of the transition between a lamellar structure and a
hexagonal structure is investigated in section 4. It is pointed out that there are two different
kinds of domain boundary in this case. The ratio of the velocities of the domain boundaries
is evaluated. In section 5, we present computer simulations of the morphological transition
between lamellar and hexagonal structures in two dimensions and make a comparison with the
theoretical results. Simulations in three dimensions are described in section 6. A summary
and discussion are given in section 7. In the appendix, the effective free energy for a hexagonal
structure is derived in terms of the amplitude and the phase for the periodic structure.

2. The kinetic equation for microphase separation

Our model equation for A–B-type diblock copolymers is given by the following time-evolution
equation [18]:

∂φ

∂t
= ∇2 δF

δφ
(1)

where φ = φA − φB with φA (φB) the local volume fraction of the A (B) monomers. The
incompressibility condition φA +φB = constant has been assumed. The free-energy functional
F is given by [19]

F = FGL + FLR. (2)
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The first part is the usual Ginzburg–Landau free energy

FGL =
∫

d�r
[

1

2
( �∇φ)2 +W(φ)

]
(3)

withW(φ) = −(τ/2)φ2 + (g/4)φ4. The coefficients τ and g are assumed to be positive. The
second part is specific to copolymers and is given by

FLR = α

2

∫
d�r

∫
d�r ′ G(�r, �r ′)[φ(�r)− φ̄][φ(�r ′)− φ̄] (4)

where φ̄ is the average of φ. The positive constant α depends on the block ratio f = NA/N

where NA (NB) is the molecular weight of the A (B) block and N = NA + NB. The function
G(�r, �r ′) is defined through the relation

−∇2G(�r, �r ′) = δ(�r − �r ′). (5)

The long-range interaction FLR comes from the osmotic incompressibility of diblock co-
polymers. It is known that the competition between the short-range attractive interaction given
by the gradient term in (3) and the long-range repulsive interaction is a general feature for
formation of mesophases [20].

In reference [19], we have calculated the equilibrium free energy for the ordered structures
in the strong-segregation limit. However, one cannot realize the morphological transition
by changing temperature in the strong-segregation limit because the phase boundaries are
independent of temperature. Hence, we are here concerned with the weak-segregation case
where morphological transitions are achievable by temperature quench. A similar analysis
has been made in reference [14] where, however, only lamellar and hexagonal structures were
examined.

In the weak-segregation case, we may retain only the fundamental modes of modulation
and hence the local volume fraction φ can be written as

φ(�r) = c + A
∑
i

[ei �Qi ·�r + e−i �Qi ·�r ] (6)

where c = φ̄. The magnitude Q = | �Qi | (i = 1, 2, . . . , n) of the reciprocal-lattice vectors �Qi
and the amplitude A should be determined. The gyroid structure cannot be represented by the
single-wavenumber approximation (6), which is not considered in the present paper.

Substituting (6) into (2) and ignoring the higher harmonics generated by the nonlinear
term φ4, one obtains per unit area

F(Q,A) = n�(Q)A2 + U(A) (7)

where

�(Q) = Q2 − τ +
α

Q2
(8)

andU(A) is the part which does not containQ and its form depends on the modulated structures.
The two unknown constantsQ and A are determined by the minimization of F(Q,A):

∂F

∂Q
= ∂F

∂A
= 0. (9)

In particular, one obtainsQ2 = √
α from (8).

Generally the nonlinear term in the free energy is not local as in (3) but is nonlocal. In
this case, the magnitude of the wavenumber is coupled with the amplitude. Such a correction
might be important in the disorder–order kinetics. However, we omit the nonlocality in this
paper since it is expected to be a secondary effect in the kinetics of the order–order transitions.
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3. Stability for modulated structures

When one deals with the dynamics of a morphological transition where a stable new structure
is growing in the matrix of a less stable structure, the mode expansion (6) has to be generalized
in such a way that the amplitude may depend on space and time:

φ(�r) = c +
∑
i

[Ai(�r, t)ei �Qi ·�r + A∗
i (�r, t)e−i �Qi ·�r ]. (10)

Note that the amplitude is generally complex andA∗ is the complex conjugate ofA. The phase
variable is necessary to represent a weak deformation of the structure, i.e., the elastic effect.
The effective free energy for a hexagonal structure in terms of the amplitude and the phase
will be given in the appendix.

In this section, we examine the various equilibrium structures and their stability. In this
case, the amplitude is assumed to be real and independent of space.

3.1. Lamellar versus hexagonal structures

First, we study lamellar and hexagonal structures. The concentration wave can be represented
as

φ(�r) = c + a(t)[ei �Q1·�r + e−i �Q1·�r ] + h(t)
∑
i=2,3

[ei �Qi ·�r + e−i �Qi ·�r ] (11)

where �Q1 = (Q, 0), �Q2 = (−Q/2,√3Q/2) and

�Q1 + �Q2 + �Q3 = 0. (12)

In this subsection, we ignore, without loss of generality, the third component of the reciprocal-
lattice vector. When h = 0, equation (11) represents a lamellar mesophase, whereas when
a = h, it represents a hexagonal structure.

Substituting (11) into (1) yields under the single-wavenumber approximation

da

dt
= −Q2�(Q)a − 3gQ2(c2a + a3 + 2ch2 + 4ah2) (13)

dh

dt
= −Q2�(Q)h− 3gQ2(c2h + 2a2h + 3h3 + 2cah). (14)

Note that sinceQ2 = √
α,

�(Q) = 2
√
α − τ. (15)

The equilibrium lamellar solution is given from equations (13) and (14) by h = 0 and a ≡ ae
where ae is given by

a2
e = −�(Q)

3g
− c2. (16)

The right-hand side of (16) must be positive. However, it turns out that the lamellar solution
becomes unstable before it becomes negative as shown below.

Linearization of equations (13) and (14) around the equilibrium solution a = ae and h = 0
gives us two decoupled equations:

d δa

dt
= −6ga2

eQ
2 δa (17)

d δh

dt
= −3gaeQ

2(ae + 2c) δh (18)
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where δa and δh denote the deviations. For negative values of c, the equilibrium solution is
unstable for hexagonal disturbance when ae > 2|c|. Using (16), this is equivalent to

τ < τLH ≡ 2
√
α + 15gc2. (19)

Note that equations (17) and (18) are decoupled. This means that the lamellar domains undergo
a varicose-type modulation at the instability point.

The equilibrium hexagonal solution is given from equations (13) and (14) by a = h ≡ he
where he is the larger solution of the equation

3g(5h2
e + 2che) = −�(Q)− 3gc2. (20)

It is readily shown from (20) thathe > |c|/5. Small deviations δa and δh around the equilibrium
solution obey

d δa

dt
= −6gheQ

2[(−c + he) δa + 2(2he + c) δh] (21)

d δh

dt
= −6gheQ

2[(2he + c) δa + 3he δh]. (22)

The coefficient matrix has a positive eigenvalue when he > 2|c| or he < |c|/5, the latter of
which is excluded by the above condition. Therefore the hexagonal structure is unstable when
he > 2|c| which is identical with

τ > τHL ≡ 2
√
α + 51gc2. (23)

The eigenfunction at the instability threshold is given by (δa, δh) ∝ (2,−1) and hence one of
the three modes becomes dominant post-threshold as is expected.

In order to determine the coexistence line for lamellar and hexagonal structures, one has
to evaluate the equilibrium free energy by using the amplitudes ae and he. The equilibrium
free energy per area for a lamellar structure is given, from equations (2) and (10) with a = ae
and h = 0, by

FL = −τ
2
c2 +

g

4
c4 − 1

6g
(�(Q) + 3gc2)2 (24)

where we have used (16). Similarly, the free energy for a hexagonal structure is obtained as

FH = −τ
2
c2 +

g

4
c4 − 6gch3

e − 45

2
gh4

e (25)

where (20) has been used. Comparing (24) and (25) and after elementary calculations, one
obtains the coexistence line given by

τ = 2
√
α +

57 + 18
√

6

5
gc2. (26)

3.2. Hexagonal versus BCC structures

The smallest reciprocal vectors which characterize a BCC structure are given by

�Q1 = (1,−1, 0) �Q2 = (0, 1,−1)

�Q3 = (−1, 0, 1) �Q4 = (1, 1, 0)
�Q5 = (0, 1, 1) �Q6 = (Q/

√
2)(1, 0, 1)
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where the multiplicative factorQ/
√

2 is omitted for simplicity. These are not independent but
have the relations

�Q1 + �Q2 + �Q3 = 0 (27)

�Q1 = �Q6 − �Q5 (28)

�Q2 = �Q4 − �Q6 (29)

�Q3 = �Q5 − �Q4. (30)

Under the single-wavenumber approximation, one may write the concentration wave for a
BCC structure as

φ(�r) = c +
∑
i=1,2,3

hi[e
i �Qi ·�r + e−i �Qi ·�r ] +

∑
i=4,5,6

bi[e
i �Qi ·�r + e−i �Qi ·�r ] (31)

where the amplitudes bi and hi are to be determined (bi = hi for BCC structure). When
bi = 0, equation (31) with h1 = h2 = h3 = h is a representation of a hexagonal structure. In
this case, the axis of a cylindrical domain is along the [111] direction.

Substituting (31) with h1 = h2 = h3 = h and b4 = b5 = b6 = b into (1) and retaining
the lowest-order couplings, we obtain

dh

dt
= −Q2�(Q)h− 3gQ2(c2h + 5h3 + 6hb2 + 2ch2 + 2cb2 + 4hb2) (32)

db

dt
= −Q2�(Q)b − 3gQ2(c2b + 5b3 + 6h2b + 4cbh + 4h2b). (33)

The equilibrium solution for a BCC structure is given by putting b = h = be �= 0 and
dh/dt = db/dt = 0 in equations (32) and (33) where be is the solution of the equation

�(Q) + 3g(c2 + 15b2
e + 4cbe) = 0. (34)

There are two solutions for be. The stability of the BCC solution can be examined by
substituting h = be + δh and b = be + δb into equations (32) and (33) and retaining only
the linear terms of the deviations δh and δb:

d δh

dt
= Aδh + B δb (35)

d δb

dt
= B δh + Aδb (36)

where

A = −30gb2
eQ

2 (37)

B = −12gbeQ
2[5be + c]. (38)

Putting δh, δb ∝ eλt , one obtains

λ = λ+ ≡ −6gbeQ
2[15be + 2c] (39)

λ = λ− ≡ 6gbeQ
2[5be + 2c] (40)

where (34) has been used. For the negative solution of (34), λ− is always positive since c is
chosen to be negative. Therefore one may consider only the positive solution of (34). When
be > 0, it is readily proved that λ+ < 0. Thus the instability of BCC structure occurs when
λ− > 0, that is, be > (2/5)|c|, from which one obtains the stability limit

τ = τBH ≡ 2
√
α +

27

5
gc2. (41)
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When τ > τBH , a BCC structure is linearly unstable for hexagonal disturbance. The eigen-
function at the instability point is given by (δh, δb) = (1,−1). It is noted that if one puts
δh = δb in (35), only the eigenvalue λ+ is obtained and hence no instability is predicted.

The stability of the BCC structure compared with the disorder state can be studied by
putting h1 = be + δh1, h2 = h3 = be + δh2, b4 = b6 = be + δb4 and b5 = be + δb5 in the
equations for bi and hi and linearizing them. After tedious but elementary calculations, one
obtains

τ = τBO ≡ 2
√
α +

11

5
gc2. (42)

When τ is smaller than τBO , the BCC structure becomes unstable and the uniform state appears.
The stability limit for the hexagonal structure against BCC disturbance can be obtained

similarly. The hexagonal solution is the equilibrium solution of (32) and (33) with b = 0 and
h ≡ he which satisfies (20). By putting b = δb and h = he + δh in (32) and (33) one obtains
two decoupled equations:

∂ δh

∂t
= (λ− 15gh2

eQ
2) δh (43)

∂ δb

∂t
= λ δb (44)

where

λ = −3gheQ
2(5he + 2c). (45)

Here we have used (20). We find that when he < (2/5)|c|, the hexagonal structure is unstable
for BCC disturbance. Using the solution he obtained from (20), the instability condition is
given by

τ < τHB ≡ 2
√
α + 3gc2. (46)

Evaluation of the coexistence line for BCC and hexagonal structures is fairly complicated.
Substituting (31) with hi = bi = be into (2), one obtains the equilibrium free energy per unit
area for BCC structure:

FB = −τ
2
c2 +

g

4
c4 − 24gcb3

e − 135gb4
e . (47)

This should be compared with (25) for the hexagonal state. We make an ansatz that the
coexistence line takes the form

−�(Q) = Dgc2 (48)

where the numerical factor D is to be determined. By using (48), the equilibrium amplitudes
he and be are given from (20) and (34), respectively, by

he = −(3 +
√

15D − 36)
c

15
(49)

be = −(2 +
√

5D − 11)
c

15
. (50)

Substituting these into (25) and (47) and equating them, we find numerically D ≈ 3.44. In
this way, the coexistence line is given from (48) by

τ ∼= 2
√
α + 3.44gc2. (51)

In summary, the lamellar structure is stable for

τ̂ > 15c2 (52)
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where

τ̂ = (τ − 2
√
α)/g. (53)

The hexagonal structure is stable in the region

3c2 < τ̂ < 51c2. (54)

Finally the BCC structure is stable when

11

5
c2 < τ̂ <

27

5
c2. (55)

Note that there are overlapping regions where two different structures are linearly stable. The
coexistence line between lamellar and hexagonal structures is given by

τ̂ = 57 + 18
√

6

5
c2 ≈ 20.22c2 (56)

and the one between hexagonal and BCC structures by

τ̂ ∼= 3.44c2. (57)

These lines are depicted in the phase diagram shown in figure 1.

(e)

0.1

0.2

-0.1 -0.05 0 0.05 0.1

L

τ

φ

H
B

(a)

(b)

(c) (d)

0

Figure 1. The phase diagram in the weak-segregation regime obtained using the single-wavenumber
approximation. The upper solid line is the coexistence line for lamellar and hexagonal structures
whereas the lower solid line is the one for hexagonal and BCC structures. The dotted lines (a)–(e)
are the stability limits given by equations (52), (54) and (55). The symbol ∗ indicates the parameters
τ̂ = 0.0450 and 0.0117 for φ̄ = 0.04 and the symbol × indicates τ̂ = 0.1784, 0.0317, 0.0184 and
0.0110 for φ̄ = 0.06 from the top to the bottom.

4. Kinetics of the lamellar–hexagonal transition

Now we study the kinetics of the morphological transition. We consider the transition from
a hexagonal structure to a lamellar structure in the weak-segregation regime with changing
temperature. As illustrated in figure 2, there are two different configurations of the domain
boundary (interface). In figure 2(a), the interface is parallel to the lamellar stripes whereas that
in figure 2(b) makes an angle of π/3 with the stripes.

When two different mesophases exist, one needs to consider the space dependence of the
amplitude in the mode expansion

φ(�r) = c + 2
∑
i=1,2,3

Hi(�r, t) cos( �Qi · �r). (58)
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(a)

(b)

Figure 2. Two kinds of configuration of an interface between lamellar and hexagonal structures:
(a) parallel to the lamellar stripes; (b) with the angle π/3 between the interface and the stripes.

Since the elastic mismatch is expected to be small in the configuration in figure 2, we do not
consider the phase variable in (58).

The kinetic equations of the amplitudes Hi are obtained as follows. First we substitute
(58) into (1) and then multiply both sides of the equation by cos( �Qi · �r). Next we carry out
the integration over one period ignoring the space dependence of Hi . In this way, one obtains

∂H1

∂t
= 4( �Q1 · �∇)2H1 +Q2

1S1(H1, H2, H3) + ∇2[−∇2H1 − S1(H1, H2, H3)] (59)

where

S1 = τeffH1 − 6gcH2H3 − 3gH 3
1 − 6gH1(H

2
2 +H 2

3 ) (60)

with

τeff = −�(Q)− 3gc2 = τ − 2
√
α − 3gc2. (61)

Equations for H2 and H3 are readily obtained by permutation of the subscripts 1, 2 and 3.
We will ignore the last term of equation (59) in the subsequent analysis. The justification

of this approximation requires two conditions. One is the gradient expansion based on the
weak spatial variation of the amplitudes. The other is the fact that the equilibrium amplitudes
are of the order of

√
τeff when |c| is small. See equations (67) and (68) below. This means

that the system is close to the transition point τ = 2
√
α and c = 0.

Here we make the remark that if fluctuations are taken into account, the transition at
τ = 2

√
α and c = 0 becomes first order [21]. Therefore in order for the above approximation

to be valid this fluctuation correction must also be small.
The kinetic equation (59) without the last term can be expressed in an alternative way. In

the appendix, we derive the effective free energy in terms of the amplitude and the phase, from
which we obtain

∂Hi

∂t
= −Q2

[
−c0( �Qi · �∇)2Hi +

∂G

∂Hi

]
(62)

where

G =
∑
i

[
−τeff

2
H 2
i +

3

4
gH 4

i

]
+

3g

2

∑
i �=j
H 2
i H

2
j + 6cgH1H2H3 (63)
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with

c0 = 1

2Q

∂

∂Q

1

Q

∂�(Q)

∂Q
= 4α

Q6
. (64)

Equation (62) agrees precisely with equation (59) without the last term. Note that equation (62)
describes a lamellar structure in the special case H2 = H3 = 0.

The propagating velocity of the interface can be evaluated from equation (62). In particular,
we estimate the ratio of the velocity of the interface in figure 2(a) to that in figure 2(b) as follows.
In the case of figure 2(a), the reciprocal vectors are given by �Q1 = (1, 0), �Q2 = (−1/2,

√
3/2)

and �Q3 = (−1/2,−√
3/2) where the magnitude has been normalized by Q. Since the

component �Q1 represents the lamellar structure in figure 2(a), we write H1 = L. Noting that
all of the amplitudes depend only on the x-axis, we have from (62)

∂L

∂t
= c0

∂2L

∂x2
− ∂G

∂L
(65)

and
∂Hi

∂t
= c0

4

∂2Hi

∂x2
− ∂G

∂Hi
(66)

for i = 2 and 3, where the multiplicative factor Q2 has been eliminated by redefining the
unit of time. The boundary conditions are L = Leq and H2 = H3 = 0 for x → −∞ and
L = H2 = H3 = Heq for x → ∞ where

Leq =
(
τeff

3g

)1/2

(67)

and

Heq = −3cg + (9c2g2 + 15gτeff )1/2

15g
(68)

are the uniform equilibrium solutions.
When the interface moves at a constant velocityVa , the left-hand side of equations (65) and

(66) is replaced by −Va ∂L/∂x and −Va ∂Hi/∂x, respectively. Multiplying these equations
by ∂L/∂x and ∂Hi/∂x and using the boundary conditions, one obtains

Va = -G

σT
(69)

where

-G = G(Leq, 0, 0)−G(Heq,Heq,Heq) (70)

σT =
∫ ∞

−∞
dx

[(
∂L

∂x

)2

+

(
∂H2

∂x

)2

+

(
∂H3

∂x

)2]
. (71)

The numerator -G vanishes along the coexistence line.
One obtains the same expression for the interface velocity Vb for the case in figure 2(b).

However, since the configuration is different, the numerical coefficients in front of the factor
c0 are different in (65) and (66):

∂L

∂t
= c0

4

∂2L

∂x2
− ∂G

∂L
(72)

∂H2

∂t
= c0

∂2H2

∂x2
− ∂G

∂H2
(73)

∂H3

∂t
= c0

4

∂2H3

∂x2
− ∂G

∂H3
. (74)
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This difference of the coefficients is a geometrical effect arising because the interface normal
is not parallel to the reciprocal vectors.

By taking this into account, we estimate σT for each configuration in figures 2(a) and
2(b). The interfacial energy in figure 2(a) is estimated from (65) and (66) with the boundary
conditions as

σaT � (Leq −Heq)2
ξL

+
4H 2

eq

ξH
(75)

where ξL is the interface width for the modeL(H1)whereas ξH is that forH2 andH3. Similarly
the interfacial energy for the configuration in figure 2(b) is given from (72), (73) and (74) by

σbT � 2(Leq −Heq)2
ξL

+
3H 2

eq

ξH
. (76)

In this way, the ratio Va/Vb is approximately given by

Va

Vb
= σbT

σ aT
= 2(Leq −Heq)2 + 3H 2

eq

(Leq −Heq)2 + 4H 2
eq

(77)

where we have used the fact that the intrinsic interface width is the same for both lamellar and
hexagonal amplitudes, i.e., ξL = ξH , as was shown in reference [14]. From (26) and (61), one
has the relation valid at the coexistence line:

τeff = 42 + 18
√

6

5
gc2. (78)

Substituting this into (67) and (68), the ratio is evaluated as

Va

Vb
≈ 0.944. (79)

This result will be compared with the simulations in the next section.

5. Computer simulations in two dimensions

Computer simulations of the morphological transitions between lamellar and hexagonal
mesophases are shown in figures 3–8 which are obtained by solving equation (1) numerically
in two dimensions. The space mesh size is set at 0.7 with the total number of meshes 256×256
and the time increment is 1/45. The periodic boundary conditions are imposed. The coefficients
g and α in (2) are fixed as g = 4.5 and α = 0.9 throughout the simulations.

The domain evolution from a disordered lamellar to a hexagonal structure for φ̄ = 0.04
and τ̂ = 0.0117 is given in figure 3. This was obtained in such a way that we provide initially
a lamellar structure for φ̄ = 0.04 and τ̂ = 0.0450 and then abruptly change the value of τ̂ to
τ̂ = 0.0117. One can see that hexagonal domains appear first at the grain boundaries of the
lamellar structure having a chevron shape [22] and then gradually cover the whole space.

Shown in figure 4 is the evolution of the hexagonal structure starting from almost perfect
lamellar domains. Since we have not introduced the thermal noise in the present kinetic
equation (1), there is an incubation time followed by a rather abrupt transition to the hexagonal
structure. The time evolution of the scattering intensity is displayed in figure 5. It is clear
that when the undulation instability occurs in the stripe domains around t = 52 000-t , the
hexagonal spots appear in the scattering intensity. The cross-shaped spots here and in figure 8
below are an artifact due to dividing the space into square cells in the numerical simulations.

The transition from disordered hexagons having many grains for φ̄ = 0.04 and τ̂ = 0.0117
to a lamellar structure for φ̄ = 0.04 and τ̂ = 0.0450 is shown in figure 6. Again the new
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Figure 3. The morphological transition from disordered lamellar to hexagonal structures. The
black (white) regions indicate φ > (<) φ̄. The time is t = 0, 10 000-t , 20 000-t , 30 000-t ,
40 000-t and 50 000-t with -t = 1/45 from (a) to (f ).

Figure 4. The morphological transition from regular lamellar to hexagonal structures. The time is
t = 0, 13 000-t , 26 000-t , 39 000-t , 52 000-t and 65 000-t with-t = 1/45 from (a) to (f ).
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Figure 5. Scattering intensity in the transition from regular lamellar to hexagonal structures. The
time is t = 0, 13 000-t , 26 000-t , 39 000-t , 52 000-t and 65 000-t with -t = 1/45 from
(a) to (f ).
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Figure 6. The morphological transition from disordered hexagonal structures with grains to
lamellar structures. The time is t = 0, 20 000-t , 40 000-t , 60 000-t , 80 000-t and 100 000-t
with -t = 1/45 from (a) to (f ).

Figure 7. The morphological transition from hexagonal to lamellar structures. Initially a pair
of dislocations form the central part of the system. The time is t = 0, 15 000-t , 30 000-t ,
45 000-t , 60 000-t and 75 000-t with -t = 1/45 from (a) to (f ).
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Figure 8. Scattering intensity in the transition shown in figure 7. The time is t = 0, 15 000-t ,
30 000-t , 45 000-t , 60 000-t and 75 000-t with -t = 1/45 from (a) to (f ).
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structure emerges along the grain boundaries. Stripe domains nucleated at isolated dislocations
also exist, which have a different orientation. However, these lamellar domains are eventually
dominated by the major ones. The configuration at the late stage reveals a zigzag pattern
influenced by the initial grain boundaries.

In order to investigate systematically the growth of lamellar structures triggered by an
isolated defect, we carried out simulations for φ̄ = 0.04 which are shown in figure 7. In
this case, we put a pair of dislocations initially at the centre of the system. On changing the
temperature from τ̂ = 0.0117 to τ̂ = 0.0450, this defect pair acts as a nucleation centre for
the formation of lamellae. In fact, a domain of the lamellar structure grows at the expense of
the surrounding hexagonal matrix. It is worth noting that the domain having lamellae takes a
hexagonal shape. Furthermore, it is found that there are two kinds of interface depending on
the relative orientation of the reciprocal-lattice vectors of lamellar and hexagonal structures,
which are equivalent to those in figures 2(a) and 2(b). The scattering intensities at each time
step of figure 7 are shown in figure 8. Modulation around the major spots at t = 15 000-t
arises from the structure factor of the growing lamellar domain.

We have estimated the velocity ratio of the two boundaries, which is found to be
approximately

0.93 � Va

Vb
< 1. (80)

The uncertainty is mainly due to the discreteness of domains in which accurate determination
of the velocity from the snapshot in figure 7 is difficult. Nevertheless, the theoretical result
(79) is found to be not inconsistent with (80).

6. Computer simulations in three dimensions

6.1. From BCC to hexagonal or lamellar structures

Qi and Wang [12, 13] have investigated the kinetics of morphological transitions in three
dimensions by solving numerically equation (1) with added random thermal noises. They
have studied the transitions by raising the temperature starting from lamellar or hexagonal
structures. In this section, we shall show the results of our simulations in three dimensions of
transitions from a BCC structure to other mesophases caused by quenching the temperature.

We have solved equation (1) numerically in a cubic system having the mesh number N3

mainly withN = 40. The mesh size is-x = 1.0 whereas the time increment is-t = 0.0756.
The periodic boundary conditions are imposed at the system boundary. We have employed the
discretization scheme used in reference [23] for the Laplace operator. The parameters g and
α are fixed at g = 5.45 and α = 1.32. The average volume fraction φ̄ is chosen as φ̄ = 0.06
throughout this subsection.

Starting with a random initial condition for φ around φ̄, we have provided an equilibrated
BCC structure at τ̂ = 0.0110, which is shown at the top of figure 9. We have checked the
system size dependence of the morphology by changing the mesh number N and found that
a BCC structure is actually formed for N = 32, 36, 38 and 40 whereas a hexagonal structure
appears for N = 34 and 37. The result shown below is the case for N = 40.

The time evolution of the structure quenched to τ̂ = 0.0184 is displayed in figure 9 where
the isosurface φ = φ̄ is drawn. It is evident that the domains along the [111] direction of
the BCC structure merge with each other and the hexagonal structure of cylindrical domains
is developed. This is consistent with the theoretical results given in section 3 as well as the
earlier results [10] and the experiments [1].
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Figure 9. The morphological transition from BCC to hexagonal structures. The left (right) column
displays the view from the [100] ([111]) direction of the BCC structure. The time is t = 0,
t = 25 000-t and t = 30 000-t with -t = 0.0756 from the top to the bottom.

If the system is quenched to a lower temperature τ̂ = 0.0317, a percolated lamellar
structure [13] emerges in the intermediate time step and then it evolves to a final hexagonal
state as is shown in figure 10. In the quench to τ̂ = 0.0450, a similar percolated lamellar
structure appears and it exists within our simulation time. However, this does not mean that



9106 M Nonomura and T Ohta

Figure 10. The morphological transition from BCC to hexagonal structures via a percolated
lamellar structure. The left (right) column displays the view from the [100] ([111]) direction of the
BCC structure. The time is t = 0, t = 5000-t and t = 6000-t with -t = 0.0756 from the top
to the bottom.

the percolated lamellar structure is thermodynamically stable state since the thermal random
force is not added in the present simulations and the system size is rather small. When we make
a deep quench to τ̂ = 0.1784, the BCC morphology is transformed to a lamellar structure via
a percolated lamellar structure. This is shown in figure 11.
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Figure 11. The morphological transition from BCC to lamellar structures. The left (right) column
displays the view from the [100] ([111]) direction of the BCC structure. The time is t = 0,
t = 500-t and t = 1500-t with -t = 0.0756 from the top to the bottom.

Although it is not shown in the figure, it is also observed in a different run that two
lamellar domains whose normal vectors are oriented in the (1, 0, 1) and (1, 1, 0) directions
are formed, divided by a grain boundary, and then one of the lamellae becomes dominant
quite slowly.
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6.2. Bicontinuous structure

In this subsection, we describe a new bicontinuous structure found by computer simulations.
When φ̄ = 0.04, a curious structure, as shown in figure 12, is formed in the interval
0.035 � τ̂ � 0.042 starting with a random initial condition for φ. The meaning of the
colours is as follows. The φ-rich side (φ > φ̄) of the isosurface φ = φ̄ is shown in blue
whereas the side where φ < φ̄ is shown in red. Each part of figure 12 shows a different
perspective. It is noted that three tube-like domains meet at a vertex.

In order to examine the system size dependence, we have carried out simulations by
changing N from N = 32 to N = 40. When N = 34, a lamellar structure appears. For
other values of N , we have neither lamellar nor hexagonal structures, but a bicontinuous one
emerges. Although it is not perfectly periodic, the local structure is essentially the same as
in figure 12 (where N = 32 and τ̂ = 0.0383). Therefore we believe that this is intrinsic, not
forced by the special ratio of the system size to the period of modulation.

The structure in figure 12 is different from the gyroid observed experimentally [17].
In order to clarify the bicontinuous structure, we have evaluated the scattering intensity
which has the following main peaks (in units of 2π/N apart from the origin O = (0, 0, 0)):
A = (5,−3, 0), B = (3,−5,−1), C = (2,−2,−5), D = (4, 0,−4), E = (3,−1, 5),
F = (1, 5,−3) and G = (4, 4, 2). The intensities of peaks A, B, C and D are the almost same;
these are normalized to unity. The relative intensity of the peaks E and F is about 0.25 and
that of G is about 0.2. Note that peak G can be generated by E and F as

−→
OE +

−→
OF = −→

OG and
hence hereafter we will not consider it.

It is an easy task to show that the points O, E, A and C are on the same plane. The points
O, A and C constitute an almost proper triangle with the side lengths

√
33,

√
34 and

√
35.

This implies that there is a hexagonal structure of cylindrical domains whose axis is normal to
the plane OEAC.

It is also interesting to see that the points O, F, B and D form a diamond shape with each
side length

√
35. Thus there is a slightly distorted hexagonal structure normal to the OFBD

plane. Note that the points A, B, C and D form a parallelogram with the length AB = CD = 3
and BC = DA = √

26. The angle between the two vectors
−→
BD and

−→
AC is close to π/3. From

these properties, we deduce that the bicontinuous structure is a superposition of an almost
proper hexagonal structure and a distorted one having different orientations. We cannot state
conclusively at present whether the structure is really in thermodynamic equilibrium or not
since the system size is small and the thermal fluctuation is not taken into account in the present
simulations.

We make the remark that Saeki et al [24] have also found the same bicontinuous structure
as in figure 12 by computer simulations of (1). They have employed an entirely different
numerical algorithm. Furthermore, they [25] claim that the structure is identical with the
metastable phase in the lamellar–gyroid transition observed in scattering experiments on water–
surfactant mixtures [6]. These findings provide further support for the result shown here not
being an artifact.

7. Summary and discussion

We have presented a coarse-grained approach in terms of the amplitudes of modulated structures
to derive the stability limit of each mesophase and the interface velocity of a growing structure.
The results are compared with those of computer simulations. The velocity ratio obtained is
qualitatively in agreement with simulations. However, since the interfacial energy is estimated
using a rather rough approximation, a more refined theory is necessary to make a quantitative
comparison.
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Figure 12. Bicontinuous structure for τ̂ = 0.0383 and φ̄ = 0.04 at t = 300 000-t with
-t = 0.0756 starting from a random configuration of φ. The figures shown in red and blue
are the views from three different directions with the isosurface φ = φ̄. For comparison, the figure
bottom right shows the concentration variation with the isosurface φ = −0.1.

In two-dimensional simulations, we have shown that the grain boundaries or dislocations
play a decisive role for the kinetics of morphological transitions. In three dimensions, trans-
itions from BCC to hexagonal or lamellar structures are investigated where we have found that
a percolated lamellar structure appears at the intermediate stage of evolution unless the quench
from the BCC state is not sufficiently small.

The present results in three dimensions are only qualitative. This is because we are
mainly concerned with the domain evolution—such as deformation and merging during the
order–order transitions. We emphasize that this kind of study is necessary to get insight into
the morphological change of domains and to develop a dynamic theory tractable analytically
beyond the simple linear stability argument. If one wishes to investigate quantitatively the
kinetics of transitions, the degree of the structural change from references [12, 13] and the
various morphological measures such as the Euler characteristics, and mean and Gaussian
curvatures [27, 28] would be useful.

A new bicontinuous structure is obtained in simulations and the symmetry property of
the structure is analysed using the scattering intensity. As mentioned in section 6, Imai
et al have found this bicontinuous structure experimentally between lamellar and gyroid
phases in water–surfactant mixtures [6, 25]. By analysing the x-ray scattering intensities,
they conclude that the structure belongs to theR3̄c symmetry group. (In their earlier paper [6],
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they identified it erroneously as R3̄m symmetry.) We have verified (though not shown in
figures) that the first four or five scattering peaks of the angle-averaged Fourier transform of our
bicontinuous structure are indeed consistent with the R3̄c symmetry. It is mentioned (though
somewhat confusing) that a very similar bicontinuous structure has been found experimentally
in spinodal decomposition of a polymer blend [26]. Application of the morphological measures
in reference [29] to these structures would also be interesting.

In the present simulations in three dimensions, we have employed the discretization
scheme from reference [23] which has been confirmed empirically to be the most efficient
for minimizing the anisotropy of the underlying cells. However, the discretization method
was designed originally to apply to spinodal decomposition where domains grow indefinitely.
Therefore one needs to proceed with caution when using it to investigate the order–order
transition. We have examined the robustness of the rhombohedral structure by changing the
system size in section 6 and have checked recently that it appears even for the system size
64 × 64 × 64 [30]. Furthermore, as mentioned in the preceding section, Saeki et al [24] have
obtained the same structure independently by using a different numerical method, adding a
random force. From these facts, we believe that the bicontinuous structure is an intrinsic one,
free from the possible deficiencies of the simulation scheme.

What we have not considered in the present paper is the elastic effect due to weak
deformation of the mesophases. In other words, we have ignored the phase variable in the
amplitude equation. This is justified when the structural mismatch is small as in figures 2.
However, the elasticity is generally important in the kinetics of order–order transitions,
especially when grain boundaries and dislocations are present. We will present a dynamic
theory of morphological transitions considering both the amplitude and the phase elsewhere
in the near future.
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Appendix

Here we derive the effective free energy for a hexagonal mesophase in terms of the complex
amplitudes. First, let us consider the local partW(φ) in (3). Substituting

φ(�r) = c +
∑
i=1,2,3

[Hi(�r, t)ei �Qi ·�r +H ∗
i (�r, t)e−i �Qi ·�r ] (A.1)

intoW(φ), one obtains

Weff (Hi) =
∑
i=1,2,3

[3gc2|Hi |2 +
3g

2
|Hi |4] + 6g(|H1|2|H2|2 + |H2|2|H3|2 + |H3|2|H1|2)

+ 6cg(H1H2H3 +H ∗
1H

∗
2H

∗
3 ) (A.2)

where the term proportional to τ is excluded; it is considered together with the nonlocal part.
The nonlocal part of the free energy can be written in terms of the Fourier components as

1

2

∫
d�q
(2π)3

�(q)φ�qφ−�q (A.3)
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where �(q) = q2 − τ + α/q2. The Fourier transform of (A.1) is given by

φ�q =
∑
i=1,2,3

∫
d�r [Hi(�r, t)ei �Qi ·�r +H ∗

i (�r, t)e−i �Qi ·�r ]e−i�q·�r

=
∑
i=1,2,3

(Hi,�q− �Qi +H ∗
i,�q+ �Qi ). (A.4)

From (A.3) and (A.4), one obtains, omitting the higher harmonics,

1

2

∫
d �p
(2π)3

∑
i=1,2,3

[�( �Qi + �p) + �( �Qi − �p)]Hi, �pH ∗
i,− �p. (A.5)

Expansion of �( �Q± �p) in powers of �p yields

�( �Q + �p) + �( �Q− �p) = 2�(Q) +
∑
α,β

pαpβ
∂2�

∂Qβ ∂Qα
+ · · · . (A.6)

Since
∂2�

∂Qβ ∂Qα
= δαβ 1

Q

∂�

∂Q
+QαQβ

1

Q

∂

∂Q

(
1

Q

∂�

∂Q

)
(A.7)

and ∂�/∂Q = 0 for the equilibrium value ofQ, we finally obtain the effective free energy

Feff {Hi} =
∫

d�r
[
c0

∑
i

| �Qi · �∇Hi |2 +Weff (Hi)

]
(A.8)

where c0 has been defined in (64).
If one makes the approximation that ∇2 in equation (1) can be replaced by −Q2, the

kinetic equation for the amplitudes is given by

∂Hi

∂t
= −Q2 δFeff

δH ∗
i

. (A.9)

When Hi is real, one may put Hi = H ∗
i after taking the functional derivative in (A.9). The

result agrees with (62).
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